- Kay
Wingberg (born 1949) is a
German mathematician at the
University of Heidelberg. His
research interests include algebraic number theory,
Iwasawa theory...
-
Haran &
Jarden 2000
Jannsen &
Wingberg 1982 Neukirch,
Schmidt &
Wingberg 2000,
theorem 7.5.10 Neukirch,
Schmidt &
Wingberg 2000, §VII.5 "qtr" (PDF). Retrieved...
-
Schmidt &
Wingberg 2008
Lorenz (2008) p.78
Proposition 8.1.5 of Neukirch,
Schmidt &
Wingberg 2008
Proposition 10.3.2 of Neukirch,
Schmidt &
Wingberg 2008 Lorenz...
- Artin–Verdier
duality Tate
pairing Neukirch,
Schmidt &
Wingberg (2000,
Theorem 7.2.6) See Neukirch,
Schmidt &
Wingberg (2000,
Theorem 8.6.8) for a
precise statement...
- 365–392, ISBN 978-0-8218-1635-6 Neukirch, Jürgen; Schmidt, Alexander;
Wingberg, Kay (2000),
Cohomology of
Number Fields,
Grundlehren der Mathematischen...
-
Pillay (2006),
Corollary 1.2
Schoutens (2002), §2
Kuhlmann (2000)
Jannsen &
Wingberg (1982)
Serre (2002)
Artin (1991), §3.3
Eisenbud (1995), §13,
Theorem A...
- ISBN 978-3-540-65399-8. Zbl 0956.11021. Neukirch, Jürgen; Schmidt, Alexander;
Wingberg, Kay (2008).
Cohomology of
Number Fields.
Grundlehren der Mathematischen...
- 1991. In 1993, he
obtained his PhD at the
University of
Heidelberg by Kay
Wingberg (Positive
branched extensions of
algebraic number fields). He then was...
- Stevenhagen, P. (2012).
Number Rings (PDF). p. 57. Neukirch,
Schmidt &
Wingberg 2000,
proposition VIII.8.6.11.
Cohen 1993,
Table B.4 Bloch,
Spencer J....
-
Schmidt &
Wingberg 2000 Stein. "A Com****tional
Introduction to
Algebraic Number Theory" (PDF). Neukirch, Jürgen; Schmidt, Alexander;
Wingberg, Kay (2000)...