-
expression a + b + c is of type
VecSum<
VecSum<
Vec,
Vec>,
Vec> so
Vec x = a + b + c
invokes the
templated Vec constructor Vec(
VecExpression<E> const& expr) with...
- {\
vec {v}}\!} ,
adding two
matrices would have the
geometric effect of
applying each
matrix transformation separately onto v → {\displaystyle {\
vec {v}}\...
- {\begin{aligned}{\
vec {a}}\cdot {\
vec {\sigma }}&=\
sum _{k,l}a_{k}\,\sigma _{\ell }\,{\hat {x}}_{k}\cdot {\hat {x}}_{\ell }\\&=\
sum _{k}a_{k}\,\sigma...
- }}}={\underset {\
vec {\beta }}{\mbox{arg min}}}\,L\left(D,{\
vec {\beta }}\right)={\underset {\
vec {\beta }}{\mbox{arg min}}}\
sum _{i=1}^{n}\left({\
vec {\beta }}\cdot...
- {\displaystyle p\mid \|{\
vec {w}}\|^{2}} so p = ‖ w → ‖ 2 {\displaystyle p=\|{\
vec {w}}\|^{2}} .
Hence p {\displaystyle p} is the
sum of the
squares of the...
-
either vec A {\displaystyle \operatorname {
vec} A} or
vec B {\displaystyle \operatorname {
vec} B} as follows:
vec ( A ⊗ B ) = ( I n ⊗ G )
vec A =...
- {\
vec {f}}({\
vec {x}}_{1})\prec {\
vec {f}}({\
vec {x}}_{2})} , then this
defines a
preorder in the
search space and we say x → 1 {\displaystyle {\
vec {x}}_{1}}...
- {\left|{\
vec {a}}\ {\
vec {b}}\ {\
vec {c}}\right|}{abc+\left({\
vec {a}}\cdot {\
vec {b}}\right)c+\left({\
vec {a}}\cdot {\
vec {c}}\right)b+\left({\
vec {b}}\cdot...
- {\left({\
vec {x}}\!-\!{\
vec {f}}\!_{0},{\
vec {f}}\!_{2}\right)^{2}}+\det {\left({\
vec {f}}\!_{1},{\
vec {x}}\!-\!{\
vec {f}}\!_{0}\right)^{2}}-\det {\left({\
vec...
- &=a_{1}b_{1}{\
vec {r}}_{u}\cdot {\
vec {r}}_{u}+a_{1}b_{2}{\
vec {r}}_{u}\cdot {\
vec {r}}_{v}+a_{2}b_{1}{\
vec {r}}_{v}\cdot {\
vec {r}}_{u}+a_{2}b_{2}{\
vec {r}}_{v}\cdot...