Here you will find one or more explanations in English for the word Underset.
Also in the bottom left of the page several parts of wikipedia pages related to the word Underset and, of course, Underset synonyms and on the right images related to the word Underset.
Underset
Underset Un`der*set", v. t.
To prop or support. --Bacon.
Underset
Underset Un"der*set`, n. (Naut.)
Undercurrent.
Meaning of Underset from wikipedia
- {H-{\overset {\displaystyle H \atop |}{\underset {| \atop \displaystyle H}{C}}}-{\overset {\displaystyle H \atop |}{\underset {| \atop \displaystyle H}{C}}}-{\overset...
- {\ce {H}} \atop |}{\underset {| \atop \displaystyle {\ce {H}}}{\ce {C}}}}{-}{\overset {\displaystyle {\ce {H}} \atop |}{\underset {| \atop \displaystyle...
- 0000=10\times {\underset {\text{Precision}}{1.0000}}\times {\frac {\overset {\text{Recall}}{1.0000}}{{\underset {\text{Recall}}{1.0000}}+9\times {\underset {\text{Precision}}{1...
- {\begin{aligned}{\boldsymbol {S}}&{\underset {1}{\Rightarrow }}{\boldsymbol {aBSc}}\\&{\underset {2}{\Rightarrow }}aB{\boldsymbol {abc}}c\\&{\underset {3}{\Rightarrow }}a{\boldsymbol...
- {\displaystyle {\underset {x\in \mathbb {R} }{\operatorname {argmin} }}\,\sum _{i=1}^{n}\max {\big (}(1-\tau )(x_{i}-x),\,\tau (x-x_{i}){\big )}={\underset {x\in...
- x ) for all s ∈ S } . {\displaystyle \operatorname {argmax} _{S}f:={\underset {x\in S}{\operatorname {arg\,max} }}\,f(x):=\{x\in S~:~f(s)\leq f(x){\text{...
- y i − f i ( β ) | 2 . {\displaystyle {\boldsymbol {\beta }}^{(t+1)}={\underset {\boldsymbol {\beta }}{\operatorname {arg\,min} }}\sum _{i=1}^{n}w_{i}({\boldsymbol...
- → R ⋯ → R t n {\displaystyle t_{1}{\underset {R}{\rightarrow }}t_{2}{\underset {R}{\rightarrow }}\cdots {\underset {R}{\rightarrow }}t_{n}} , the term...
- {\displaystyle {\underset {\text{acid}}{{\ce {HCl_{\,}}}}}\ +\ {\underset {\text{base}}{{\ce {H2O}}}}\quad {\ce {<=>}}\quad {\underset {{\text{conjugate...
- b i {\displaystyle b_{0}+{\underset {i=1}{\overset {\infty }{\operatorname {K} }}}{\frac {a_{i}}{b_{i}}}=b_{0}+{\underset {i=1}{\overset {\infty }{\operatorname...