- a))=\left.\left.\left.\
underbrace {a^{a^{.^{.^{.{a}}}}}} _{\
underbrace {a^{a^{.^{.^{.{a}}}}}} _{\
underbrace {\vdots } _{a}}}\right\}\
underbrace {a^{a^{.^{.^{.{a}}}}}}...
- \atop secondary} \atop amine}}}+\
underbrace {\ce {R3X}} _{{\text{halogeno-}} \atop {\text{alkane}}}{\ce {->}}\
underbrace {\ce {:\!\!\!\!{\overset {\displaystyle...
- δ ( t − n T ) } , {\displaystyle S_{\tfrac {1}{T}}(f)\ \triangleq \ \
underbrace {\sum _{k=-\infty }^{\infty }S\left(f-{\frac {k}{T}}\right)\equiv \overbrace...
- \left.{\begin{matrix}G&=&3\
underbrace {\uparrow \uparrow \cdots \cdots \cdots \cdots \cdots \uparrow } 3\\&&3\
underbrace {\uparrow \uparrow \cdots \cdots...
- flux b {\displaystyle \
underbrace {\frac {\partial k}{\partial t}} _{{\text{Local}} \atop {\text{derivative}}}\!\!\!+\ \
underbrace {{\overline {u}}_{j}{\frac...
- {\displaystyle (a+b)(c+d)=\
underbrace {ac} _{\text{first}}+\
underbrace {ad} _{\text{outside}}+\
underbrace {bc} _{\text{inside}}+\
underbrace {bd} _{\text{last}}...
- \uparrow } 3\\&3\
underbrace {\uparrow \uparrow \cdots \cdots \cdots \uparrow } 3\\&\
underbrace {\qquad \;\;\vdots \qquad \;\;} \\&3\
underbrace {\uparrow \uparrow...
- {\displaystyle h^{(n)}(z_{0})=n!{\frac {h(z)}{(z-z_{0})^{n}}}-(z-z_{0})\
underbrace {n!\sum _{k=n+1}^{\infty }{\frac {h^{(k)}(z_{0})}{k!}}(z-z_{0})^{k-(n+1)}}...
- ⋯ ⊗ V ∗ ⏟ n . {\displaystyle T_{n}^{m}(V)=\
underbrace {V\otimes \dots \otimes V} _{m}\otimes \
underbrace {V^{*}\otimes \dots \otimes V^{*}} _{n}.} Example...
- that:(p 198, Thm. 23.14) 1 + ⋯ + 1 ⏟ n summands = 0 {\displaystyle \
underbrace {1+\cdots +1} _{n{\text{ summands}}}=0} if such a
number n exists, and...