-
multiplication of
trigintaduonions is
neither commutative nor ****ociative. However,
being products of a Cayley–****son construction,
trigintaduonions have the...
-
Dimension 32 (
trigintaduonion)". arXiv:0907.2047v3 [math.RA]. Cariow, A.; Cariowa, G. (2014). "An
algorithm for
multiplication of
trigintaduonions". Journal...
-
construction to the
sedenions yields a 32-dimensional algebra,
called the
trigintaduonions or
sometimes the 32-nions. The term
sedenion is also used for other...
- is not multiplicative.
After the
sedenions are the 32-dimensional
trigintaduonions (or 32-nions), the 64-dimensional ****agintaquatronions (or 64-nions)...
- {\displaystyle \mathbb {O} } ),
sedenions ( S {\displaystyle \mathbb {S} } ),
trigintaduonions ( T {\displaystyle \mathbb {T} } ), and
other hypercomplex numbers...
- {\displaystyle \mathbb {S} } , in turn a
subset of the 32-dimensional
trigintaduonions T {\displaystyle \mathbb {T} } , and ad
infinitum with 2 n {\displaystyle...
- non-primes (0, 1, 4, ..., 32) is 1 2 . {\displaystyle {\tfrac {1}{2}}.} The
trigintaduonions form a 32-dimensional
hypercomplex number system. The
atomic number...
-
Hyperbolic quaternions Sedenions ( S {\displaystyle \mathbb {S} } )
Trigintaduonions ( T {\displaystyle \mathbb {T} } ) Split-biquaternions Multicomplex...
-
dimensions Sedenion 26
dimensions Bosonic string theory 32
dimensions Trigintaduonion Higher dimensions Vector space Plane of
rotation Curse of dimensionality...
-
whose domain is
hypercomplex (e.g. quaternions, octonions, sedenions,
trigintaduonions etc.) p-adic function: a
function whose domain is p-adic.
Linear function;...