-
multiplication of
trigintaduonions is
neither commutative nor ****ociative. However,
being products of a Cayley–****son construction,
trigintaduonions have the...
-
Dimension 32 (
trigintaduonion)". arXiv:0907.2047v3 [math.RA]. Cariow, A.; Cariowa, G. (2014). "An
algorithm for
multiplication of
trigintaduonions". Journal...
-
construction to the
sedenions yields a 32-dimensional algebra,
called the
trigintaduonions or
sometimes the 32-nions. The term
sedenion is also used for other...
-
Hyperbolic quaternions Sedenions ( S {\displaystyle \mathbb {S} } )
Trigintaduonions ( T {\displaystyle \mathbb {T} } ) Split-biquaternions Multicomplex...
- {\displaystyle \mathbb {S} } , in turn a
subset of the 32-dimensional
trigintaduonions T {\displaystyle \mathbb {T} } , and ad
infinitum with 2 n {\displaystyle...
- {\displaystyle \mathbb {O} } ),
sedenions ( S {\displaystyle \mathbb {S} } ),
trigintaduonions ( T {\displaystyle \mathbb {T} } ), and
other hypercomplex numbers...
- is not multiplicative.
After the
sedenions are the 32-dimensional
trigintaduonions (or 32-nions), the 64-dimensional ****agintaquatronions (or 64-nions)...
- non-primes (0, 1, 4, ..., 32) is 1 2 . {\displaystyle {\tfrac {1}{2}}.} The
trigintaduonions form a 32-dimensional
hypercomplex number system. 32 is the
ninth 10-happy...
-
dimensions Sedenion 26
dimensions Bosonic string theory 32
dimensions Trigintaduonion Higher dimensions Vector space Plane of
rotation Curse of dimensionality...
- then
yields the quaternions, the octonions, the sedenions, and the
trigintaduonions. This
construction turns out to
diminish the
structural properties...