Definition of Swarttouw. Meaning of Swarttouw. Synonyms of Swarttouw

Here you will find one or more explanations in English for the word Swarttouw. Also in the bottom left of the page several parts of wikipedia pages related to the word Swarttouw and, of course, Swarttouw synonyms and on the right images related to the word Swarttouw.

Definition of Swarttouw

No result for Swarttouw. Showing similar results...

Meaning of Swarttouw from wikipedia

- & Swarttouw (2010), p. 213. Koekoek, Lesky, & Swarttouw (2010), p. 213. Koekoek, Lesky, & Swarttouw (2010), p. 214. Koekoek, Lesky, & Swarttouw (2010)...
- extended by Koekoek & Swarttouw (1998) and Koekoek, Lesky & Swarttouw (2010) to cover basic orthogonal polynomials. Koekoek, Lesky & Swarttouw (2010, p.183) give...
- in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties. The polynomials are...
- +1;\alpha +1,-N+1;1).\ } Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties. If α = β = 0 {\displaystyle...
- ISBN 0-486-43808-2. Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier...
- in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties. The polynomials are...
- Bessel function, and satisfies the Hahn-Exton q-difference equation (Swarttouw (1992)). This function was introduced by Hahn (1953) in a special case...
- ISBN 978-0-13-011189-0. Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier...
- Polynomials in One Variable, Cambridge University Press. Koekoek, R. & Swarttouw, R. F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials...
- in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties. The polynomials are...