- then the
intersection of any
collection of
subsemigroups of S is also a
subsemigroup of S. So the
subsemigroups of S form a
complete lattice. An example...
-
similarly named notion for a
semigroup is
defined likewise and it is a
subsemigroup. The
center of a ring (or an ****ociative algebra) R is the
subset of...
- sx=xs{\text{ for
every }}s\in S\}.} Then S ′ {\displaystyle S'}
forms a
subsemigroup and S ′ = S ‴ = S ′′′′′ {\displaystyle S'=S'''=S'''''} ; i.e. a commutant...
- theory, a
maximal subgroup of a
semigroup S is a
subgroup (that is, a
subsemigroup which forms a
group under the
semigroup operation) of S
which is not...
- two
elements as
subsemigroups. In the
example above, the set {−1,0,1}
under multiplication contains both {0,1} and {−1,1} as
subsemigroups (the
latter is...
-
orthodox semigroup is a
regular semigroup whose set of
idempotents forms a
subsemigroup. In more
recent terminology, an
orthodox semigroup is a
regular E-semigroup...
- the
study of the
properties of epimorphisms. For example, let U is a
subsemigroup of S
containing U, the
inclusion map U ↪ S {\displaystyle U\hookrightarrow...
- Let T be a semigroup. A
semigroup S that is a
homomorphic image of a
subsemigroup of T is said to be a
divisor of T. The Krohn–Rhodes
theorem for finite...
- the
binary operation of concatenation. The free
semigroup A+ is the
subsemigroup of A*
containing all
elements except the
empty sequence. In the context...
- In
abstract algebra, the
idealizer of a
subsemigroup T of a
semigroup S is the
largest subsemigroup of S in
which T is an ideal. Such an
idealizer is...