Definition of Subsemigroup. Meaning of Subsemigroup. Synonyms of Subsemigroup

Here you will find one or more explanations in English for the word Subsemigroup. Also in the bottom left of the page several parts of wikipedia pages related to the word Subsemigroup and, of course, Subsemigroup synonyms and on the right images related to the word Subsemigroup.

Definition of Subsemigroup

No result for Subsemigroup. Showing similar results...

Meaning of Subsemigroup from wikipedia

- then the intersection of any collection of subsemigroups of S is also a subsemigroup of S. So the subsemigroups of S form a complete lattice. An example...
- similarly named notion for a semigroup is defined likewise and it is a subsemigroup. The center of a ring (or an ****ociative algebra) R is the subset of...
- two elements as subsemigroups. In the example above, the set {−1,0,1} under multiplication contains both {0,1} and {−1,1} as subsemigroups (the latter is...
- clearly do) will obey the cancellative law. In a different vein, (a subsemigroup of) the multiplicative semigroup of elements of a ring that are not zero...
- Let T be a semigroup. A semigroup S that is a homomorphic image of a subsemigroup of T is said to be a divisor of T. The Krohn–Rhodes theorem for finite...
- sx=xs{\text{ for every }}s\in S\}.} Then S ′ {\displaystyle S'} forms a subsemigroup and S ′ = S ‴ = S ′′′′′ {\displaystyle S'=S'''=S'''''} ; i.e. a commutant...
- monoid on a set A is usually denoted A∗. The free semigroup on A is the subsemigroup of A∗ containing all elements except the empty string. It is usually...
- theory, a maximal subgroup of a semigroup S is a subgroup (that is, a subsemigroup which forms a group under the semigroup operation) of S which is not...
- actually hold for any element a of an arbitrary semigroup and the monogenic subsemigroup ⟨ a ⟩ {\displaystyle \langle a\rangle } it generates. A related notion...
- orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular E-semigroup...