- In geometry, a
strophoid is a
curve generated from a
given curve C and
points A (the
fixed point) and O (the pole) as follows: Let L be a
variable line...
-
parabola Folium of
Descartes Cissoid of
Diocles Conchoid of de
Sluze Right strophoid Semicubical parabola Serpentine curve Trident curve Trisectrix of Maclaurin...
-
Descartes Cissoid of
Diocles Conchoid of de
Sluze Cubic with
double point Strophoid Semicubical parabola Serpentine curve Trident curve Trisectrix of Maclaurin...
-
hyperbola Folium of
Descartes Cissoid of
Diocles Conchoid of de
Sluze Right strophoid Semicubical parabola Serpentine curve Trident curve Trisectrix of Maclaurin...
- (asymptote to the rest of the family) a = −1,
cissoid of
Diocles a = −2,
right strophoid a = −4,
trisectrix of
Maclaurin Smith,
David Eugene (1958),
History of...
-
strict cissoid and the
latter a
construction more
general yet.
Cissoid Strophoid Chisholm, Hugh, ed. (1911). "Conchoid" . Encyclopædia Britannica. Vol...
- In geometry, a
cochleoid is a snail-shaped
curve similar to a
strophoid which can be
represented by the
polar equation r = a sin θ θ , {\displaystyle...
- {\displaystyle x=-{\tfrac {a}{2}}}
relative to the origin. The
right strophoid y 2 ( a + x ) = x 2 ( a − x ) {\displaystyle y^{2}(a+x)=x^{2}(a-x)} is...
- on some
remarkable properties of the
parabolic focale [i.e.,
oblique strophoid]].
Nouveaux mémoires de l'Académie
royale des
sciences et belles-lettres...
-
generalization of the
strophoid". The
American Mathematical Monthly. 29 (5): 204–207. doi:10.1080/00029890.1922.11986136. (See
strophoid.) Weaver, J. H. (1927)...