-
translation 1912. ed.). New York, NY: Dover. ISBN 0-486-60027-0. A.S.
Smogorzhevsky (1982)
Lobachevskian Geometry, §12
Basic formulas of
hyperbolic geometry...
-
geometry are
those that are
invariant under this group. For example,
Smogorzhevsky develops several theorems of
inversive geometry before beginning Lobachevskian...
- Society:
Translations of
Mathematical Monographs,
volume 200, ISBN 0-8218-2038-9 . A.S.
Smogorzhevsky (1982)
Lobachevskian Geometry, Mir Publishers, Moscow....
-
Mathematical ****oc. of America. pp. 243–244. ISBN 978-0-88385-522-5.
Smogorzhevsky (1976).
Lobachevskian Geometry. Moscow: Mir. p. 65. Sommerville, D.M...
- Springer ed.). New York: Springer-Verlag. p. 371. ISBN 3-540-90694-0.
Smogorzhevsky, A.S. (1982).
Lobachevskian geometry. Moscow: Mir. p. 68.
Martin Gardner...
- the
circle are
inverses in a circle. This fact
follows from one of
Smogorzhevsky's theorems: If
circles k and q are
mutually orthogonal, then a straight...