- Look up ⊕ in Wiktionary, the free dictionary. This
article contains uncommon Unicode characters.
Without proper rendering support, you may see question...
- {\displaystyle \
oplus } 0 = A, A ⊕ {\displaystyle \
oplus } A = 0, A ⊕ {\displaystyle \
oplus } B = B ⊕ {\displaystyle \
oplus } A, (A ⊕ {\displaystyle \
oplus } B)...
- {\displaystyle \
oplus } , ↮ {\displaystyle \nleftrightarrow } , and ≢ {\displaystyle \not \equiv } . The
truth table of A ⊕ B {\displaystyle A\
oplus B} shows...
- any
finite number of summands, for
example A ⊕ B ⊕ C {\displaystyle A\
oplus B\
oplus C} ,
provided A , B , {\displaystyle A,B,} and C {\displaystyle C} are...
- _{i}{\mathbf {D} _{i}}=\mathbf {D} _{0}\;\
oplus \;\mathbf {D} _{1}\;\
oplus \;\mathbf {D} _{2}\;\
oplus \;...\;\
oplus \;\mathbf {D} _{n-1}} Q = ⨁ i g i D i...
- y_{1})\
oplus \cdots \
oplus (x_{n}\
oplus y_{n})\\&=s\
oplus 0\
oplus \cdots \
oplus 0\
oplus (x_{k}\
oplus y_{k})\
oplus 0\
oplus \cdots \
oplus 0\\&=s\
oplus x_{k}\oplus...
- (A\
oplus B)\
oplus C=A\
oplus (B\
oplus C)} L3.
Identity exists:
there is a bit string, 0, (of
length N) such that A ⊕ 0 = A {\displaystyle A\
oplus 0=A}...
- s=b\
oplus (b\lll 1)\
oplus (b\lll 2)\
oplus (b\lll 3)\
oplus (b\lll 4)\
oplus 63_{16}}
where b
represents the
multiplicative inverse, ⊕ {\displaystyle \
oplus...
- \langle Jx,y\rangle _{H\
oplus H}=-\langle x,Jy\rangle _{H\
oplus H},} for
every x , y ∈ H ⊕ H . {\displaystyle x,y\in H\
oplus H.} Indeed, ⟨ J ( x 1 , x...
- {\displaystyle X\
oplus (Y\
oplus Z)\cong (X\
oplus Y)\
oplus Z\cong X\
oplus Y\
oplus Z} X ⊕ 0 ≅ 0 ⊕ X ≅ X {\displaystyle X\
oplus 0\cong 0\
oplus X\cong X} X ⊕...