Definition of Ointing. Meaning of Ointing. Synonyms of Ointing

Here you will find one or more explanations in English for the word Ointing. Also in the bottom left of the page several parts of wikipedia pages related to the word Ointing and, of course, Ointing synonyms and on the right images related to the word Ointing.

Definition of Ointing

Ointing
Oint Oint, v. t. [imp. & p. p. Ointed; p. pr & vb. n. Ointing.] [F. oint, p. p. of oindre, L. ungere. See Anoint, Ointment.] To anoint. [Obs.] --Dryden.

Meaning of Ointing from wikipedia

- 0 , {\displaystyle -\oint dS_{\text{Res}}=\oint {\frac {\delta Q}{T_{\text{surr}}}}\leq 0,} where ∮ d S Res {\displaystyle \oint dS_{\text{Res}}} is the...
- then ∮ C ( L d x + M d y ) = ∬ D ( ∂ M ∂ x − ∂ L ∂ y ) d A {\displaystyle \oint _{C}(L\,dx+M\,dy)=\iint _{D}\left({\frac {\partial M}{\partial x}}-{\frac...
- in the complex plane that satisfies ∮ γ f ( z ) d z = 0 {\displaystyle \oint _{\gamma }f(z)\,dz=0} for every closed piecewise C1 curve γ {\displaystyle...
- _{\Sigma }(\nabla \times \mathbf {F} )\cdot \mathrm {d} \mathbf {\Sigma } =\oint _{\partial \Sigma }\mathbf {F} \cdot \mathrm {d} \mathbf {\Gamma } .} More...
- _{\Omega }} is a volume integral over the volume Ω, ∮ ∂ Σ {\displaystyle \oint _{\partial \Sigma }} is a line integral around the boundary curve ∂Σ, with...
- 1 2 π i ∮ γ f ( z ) z − a d z . {\displaystyle f(a)={\frac {1}{2\pi i}}\oint _{\gamma }{\frac {f(z)}{z-a}}\,dz.\,} The proof of this statement uses the...
- ( v l × B ) ⋅ d l {\textstyle \oint \left(\mathbf {v} \times \mathbf {B} \right)\cdot \mathrm {d} \mathbf {l} =\oint \left(\mathbf {v} _{l}\times \mathbf...
- x + u d y ) {\displaystyle \oint _{\gamma }f(z)\,dz=\oint _{\gamma }(u+iv)(dx+i\,dy)=\oint _{\gamma }(u\,dx-v\,dy)+i\oint _{\gamma }(v\,dx+u\,dy)} By...
- {3}{4z}}}}\\&=-i\oint _{C}{\frac {4}{3z^{3}+10z+{\frac {3}{z}}}}\,dz\\&=-4i\oint _{C}{\frac {dz}{3z^{3}+10z+{\frac {3}{z}}}}\\&=-4i\oint _{C}{\frac...
- π i ∮ C f ′ ( z ) f ( z ) d z = Z − P {\displaystyle {\frac {1}{2\pi i}}\oint _{C}{f'(z) \over f(z)}\,dz=Z-P} where Z and P denote respectively the number...