Definition of LerchPhi. Meaning of LerchPhi. Synonyms of LerchPhi

Here you will find one or more explanations in English for the word LerchPhi. Also in the bottom left of the page several parts of wikipedia pages related to the word LerchPhi and, of course, LerchPhi synonyms and on the right images related to the word LerchPhi.

Definition of LerchPhi

No result for LerchPhi. Showing similar results...

Meaning of LerchPhi from wikipedia

- a\to \infty } . The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy. Lerch, Mathias (1887), "Note...
- when Zwegers discovered the relation with non-holomorphic modular forms, Lerch sums, and indefinite theta series. Zwegers showed, using the previous work...
- artificial earth satellites, Israel program for Scientific Translations (1967) Lerch, F.J., Wagner, C.A., Smith, D.E., Sandson, M.L., Brownd, J.E., Richardson...
- {x}{2}}\right)}{2\Gamma (1-x)}}={\frac {\Phi \left(-1,1,-x\right)}{\Gamma (-x)}}} where Φ {\displaystyle \Phi } is the Lerch zeta function. We also have the Luschny...
- case of the Lerch transcendent, and is given by χ ν ( z ) = 2 − ν z Φ ( z 2 , ν , 1 / 2 ) . {\displaystyle \chi _{\nu }(z)=2^{-\nu }z\,\Phi (z^{2},\nu...
- {x}{2}}\right)}{2\Gamma (1-x)}}={\frac {\Phi \left(-1,1,-x\right)}{\Gamma (-x)}}} where Φ {\displaystyle \Phi } is the Lerch zeta function, and as H ( x ) = Γ...
- can also be written in terms of the Lerch transcendent Φ ( z , s , a ) = ∑ n = 0 ∞ z n ( n + a ) s : {\textstyle \Phi (z,s,a)=\sum _{n=0}^{\infty }{\frac...
- cubes". arXiv:1604.07746 [math.NT]. Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv:1103.3907v6 [math.NT] Ribenboim...
- definition, in terms of the Lerch transcendent, is: β ( s ) = 2 − s Φ ( − 1 , s , 1 2 ) , {\displaystyle \beta (s)=2^{-s}\Phi \left(-1,s,{{1} \over {2}}\right)...
- imaginary part of Lis(eiθ). The Lerch transcendent is given by Φ ( z , s , q ) = ∑ k = 0 ∞ z k ( k + q ) s {\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty...