Definition of Inates. Meaning of Inates. Synonyms of Inates

Here you will find one or more explanations in English for the word Inates. Also in the bottom left of the page several parts of wikipedia pages related to the word Inates and, of course, Inates synonyms and on the right images related to the word Inates.

Definition of Inates

No result for Inates. Showing similar results...

Axes of coordinates in a plane
Axis Ax"is, n.; pl. Axes. [L. axis axis, axle. See Axle.] A straight line, real or imaginary, passing through a body, on which it revolves, or may be supposed to revolve; a line passing through a body or system around which the parts are symmetrically arranged. 2. (Math.) A straight line with respect to which the different parts of a magnitude are symmetrically arranged; as, the axis of a cylinder, i. e., the axis of a cone, that is, the straight line joining the vertex and the center of the base; the axis of a circle, any straight line passing through the center. 3. (Bot.) The stem; the central part, or longitudinal support, on which organs or parts are arranged; the central line of any body. --Gray. 4. (Anat.) (a) The second vertebra of the neck, or vertebra dentata. (b) Also used of the body only of the vertebra, which is prolonged anteriorly within the foramen of the first vertebra or atlas, so as to form the odontoid process or peg which serves as a pivot for the atlas and head to turn upon. 5. (Crystallog.) One of several imaginary lines, assumed in describing the position of the planes by which a crystal is bounded. 6. (Fine Arts) The primary or secondary central line of any design. Anticlinal axis (Geol.), a line or ridge from which the strata slope downward on the two opposite sides. Synclinal axis, a line from which the strata slope upward in opposite directions, so as to form a valley. Axis cylinder (Anat.), the neuraxis or essential, central substance of a nerve fiber; -- called also axis band, axial fiber, and cylinder axis. Axis in peritrochio, the wheel and axle, one of the mechanical powers. Axis of a curve (Geom.), a straight line which bisects a system of parallel chords of a curve; called a principal axis, when cutting them at right angles, in which case it divides the curve into two symmetrical portions, as in the parabola, which has one such axis, the ellipse, which has two, or the circle, which has an infinite number. The two axes of the ellipse are the major axis and the minor axis, and the two axes of the hyperbola are the transverse axis and the conjugate axis. Axis of a lens, the straight line passing through its center and perpendicular to its surfaces. Axis of a telescope or microscope, the straight line with which coincide the axes of the several lenses which compose it. Axes of co["o]rdinates in a plane, two straight lines intersecting each other, to which points are referred for the purpose of determining their relative position: they are either rectangular or oblique. Axes of co["o]rdinates in space, the three straight lines in which the co["o]rdinate planes intersect each other. Axis of a balance, that line about which it turns. Axis of oscillation, of a pendulum, a right line passing through the center about which it vibrates, and perpendicular to the plane of vibration. Axis of polarization, the central line around which the prismatic rings or curves are arranged. --Brewster. Axis of revolution (Descriptive Geom.), a straight line about which some line or plane is revolved, so that the several points of the line or plane shall describe circles with their centers in the fixed line, and their planes perpendicular to it, the line describing a surface of revolution, and the plane a solid of revolution. Axis of symmetry (Geom.), any line in a plane figure which divides the figure into two such parts that one part, when folded over along the axis, shall coincide with the other part. Axis of the equator, ecliptic, horizon (or other circle considered with reference to the sphere on which it lies), the diameter of the sphere which is perpendicular to the plane of the circle. --Hutton. Axis of the Ionic capital (Arch.), a line passing perpendicularly through the middle of the eye of the volute. Neutral axis (Mech.), the line of demarcation between the horizontal elastic forces of tension and compression, exerted by the fibers in any cross section of a girder. Optic axis of a crystal, the direction in which a ray of transmitted light suffers no double refraction. All crystals, not of the isometric system, are either uniaxial or biaxial. Optic axis, Visual axis (Opt.), the straight line passing through the center of the pupil, and perpendicular to the surface of the eye. Radical axis of two circles (Geom.), the straight line perpendicular to the line joining their centers and such that the tangents from any point of it to the two circles shall be equal to each other. Spiral axis (Arch.), the axis of a twisted column drawn spirally in order to trace the circumvolutions without. Axis of abscissas and Axis of ordinates. See Abscissa.
Axes of coordinates in space
Axis Ax"is, n.; pl. Axes. [L. axis axis, axle. See Axle.] A straight line, real or imaginary, passing through a body, on which it revolves, or may be supposed to revolve; a line passing through a body or system around which the parts are symmetrically arranged. 2. (Math.) A straight line with respect to which the different parts of a magnitude are symmetrically arranged; as, the axis of a cylinder, i. e., the axis of a cone, that is, the straight line joining the vertex and the center of the base; the axis of a circle, any straight line passing through the center. 3. (Bot.) The stem; the central part, or longitudinal support, on which organs or parts are arranged; the central line of any body. --Gray. 4. (Anat.) (a) The second vertebra of the neck, or vertebra dentata. (b) Also used of the body only of the vertebra, which is prolonged anteriorly within the foramen of the first vertebra or atlas, so as to form the odontoid process or peg which serves as a pivot for the atlas and head to turn upon. 5. (Crystallog.) One of several imaginary lines, assumed in describing the position of the planes by which a crystal is bounded. 6. (Fine Arts) The primary or secondary central line of any design. Anticlinal axis (Geol.), a line or ridge from which the strata slope downward on the two opposite sides. Synclinal axis, a line from which the strata slope upward in opposite directions, so as to form a valley. Axis cylinder (Anat.), the neuraxis or essential, central substance of a nerve fiber; -- called also axis band, axial fiber, and cylinder axis. Axis in peritrochio, the wheel and axle, one of the mechanical powers. Axis of a curve (Geom.), a straight line which bisects a system of parallel chords of a curve; called a principal axis, when cutting them at right angles, in which case it divides the curve into two symmetrical portions, as in the parabola, which has one such axis, the ellipse, which has two, or the circle, which has an infinite number. The two axes of the ellipse are the major axis and the minor axis, and the two axes of the hyperbola are the transverse axis and the conjugate axis. Axis of a lens, the straight line passing through its center and perpendicular to its surfaces. Axis of a telescope or microscope, the straight line with which coincide the axes of the several lenses which compose it. Axes of co["o]rdinates in a plane, two straight lines intersecting each other, to which points are referred for the purpose of determining their relative position: they are either rectangular or oblique. Axes of co["o]rdinates in space, the three straight lines in which the co["o]rdinate planes intersect each other. Axis of a balance, that line about which it turns. Axis of oscillation, of a pendulum, a right line passing through the center about which it vibrates, and perpendicular to the plane of vibration. Axis of polarization, the central line around which the prismatic rings or curves are arranged. --Brewster. Axis of revolution (Descriptive Geom.), a straight line about which some line or plane is revolved, so that the several points of the line or plane shall describe circles with their centers in the fixed line, and their planes perpendicular to it, the line describing a surface of revolution, and the plane a solid of revolution. Axis of symmetry (Geom.), any line in a plane figure which divides the figure into two such parts that one part, when folded over along the axis, shall coincide with the other part. Axis of the equator, ecliptic, horizon (or other circle considered with reference to the sphere on which it lies), the diameter of the sphere which is perpendicular to the plane of the circle. --Hutton. Axis of the Ionic capital (Arch.), a line passing perpendicularly through the middle of the eye of the volute. Neutral axis (Mech.), the line of demarcation between the horizontal elastic forces of tension and compression, exerted by the fibers in any cross section of a girder. Optic axis of a crystal, the direction in which a ray of transmitted light suffers no double refraction. All crystals, not of the isometric system, are either uniaxial or biaxial. Optic axis, Visual axis (Opt.), the straight line passing through the center of the pupil, and perpendicular to the surface of the eye. Radical axis of two circles (Geom.), the straight line perpendicular to the line joining their centers and such that the tangents from any point of it to the two circles shall be equal to each other. Spiral axis (Arch.), the axis of a twisted column drawn spirally in order to trace the circumvolutions without. Axis of abscissas and Axis of ordinates. See Abscissa.
Axis of ordinates
Axis Ax"is, n.; pl. Axes. [L. axis axis, axle. See Axle.] A straight line, real or imaginary, passing through a body, on which it revolves, or may be supposed to revolve; a line passing through a body or system around which the parts are symmetrically arranged. 2. (Math.) A straight line with respect to which the different parts of a magnitude are symmetrically arranged; as, the axis of a cylinder, i. e., the axis of a cone, that is, the straight line joining the vertex and the center of the base; the axis of a circle, any straight line passing through the center. 3. (Bot.) The stem; the central part, or longitudinal support, on which organs or parts are arranged; the central line of any body. --Gray. 4. (Anat.) (a) The second vertebra of the neck, or vertebra dentata. (b) Also used of the body only of the vertebra, which is prolonged anteriorly within the foramen of the first vertebra or atlas, so as to form the odontoid process or peg which serves as a pivot for the atlas and head to turn upon. 5. (Crystallog.) One of several imaginary lines, assumed in describing the position of the planes by which a crystal is bounded. 6. (Fine Arts) The primary or secondary central line of any design. Anticlinal axis (Geol.), a line or ridge from which the strata slope downward on the two opposite sides. Synclinal axis, a line from which the strata slope upward in opposite directions, so as to form a valley. Axis cylinder (Anat.), the neuraxis or essential, central substance of a nerve fiber; -- called also axis band, axial fiber, and cylinder axis. Axis in peritrochio, the wheel and axle, one of the mechanical powers. Axis of a curve (Geom.), a straight line which bisects a system of parallel chords of a curve; called a principal axis, when cutting them at right angles, in which case it divides the curve into two symmetrical portions, as in the parabola, which has one such axis, the ellipse, which has two, or the circle, which has an infinite number. The two axes of the ellipse are the major axis and the minor axis, and the two axes of the hyperbola are the transverse axis and the conjugate axis. Axis of a lens, the straight line passing through its center and perpendicular to its surfaces. Axis of a telescope or microscope, the straight line with which coincide the axes of the several lenses which compose it. Axes of co["o]rdinates in a plane, two straight lines intersecting each other, to which points are referred for the purpose of determining their relative position: they are either rectangular or oblique. Axes of co["o]rdinates in space, the three straight lines in which the co["o]rdinate planes intersect each other. Axis of a balance, that line about which it turns. Axis of oscillation, of a pendulum, a right line passing through the center about which it vibrates, and perpendicular to the plane of vibration. Axis of polarization, the central line around which the prismatic rings or curves are arranged. --Brewster. Axis of revolution (Descriptive Geom.), a straight line about which some line or plane is revolved, so that the several points of the line or plane shall describe circles with their centers in the fixed line, and their planes perpendicular to it, the line describing a surface of revolution, and the plane a solid of revolution. Axis of symmetry (Geom.), any line in a plane figure which divides the figure into two such parts that one part, when folded over along the axis, shall coincide with the other part. Axis of the equator, ecliptic, horizon (or other circle considered with reference to the sphere on which it lies), the diameter of the sphere which is perpendicular to the plane of the circle. --Hutton. Axis of the Ionic capital (Arch.), a line passing perpendicularly through the middle of the eye of the volute. Neutral axis (Mech.), the line of demarcation between the horizontal elastic forces of tension and compression, exerted by the fibers in any cross section of a girder. Optic axis of a crystal, the direction in which a ray of transmitted light suffers no double refraction. All crystals, not of the isometric system, are either uniaxial or biaxial. Optic axis, Visual axis (Opt.), the straight line passing through the center of the pupil, and perpendicular to the surface of the eye. Radical axis of two circles (Geom.), the straight line perpendicular to the line joining their centers and such that the tangents from any point of it to the two circles shall be equal to each other. Spiral axis (Arch.), the axis of a twisted column drawn spirally in order to trace the circumvolutions without. Axis of abscissas and Axis of ordinates. See Abscissa.
Cartesian coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Cartesian coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Geographical coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Oblique system of coordinates
Oblique muscle (Anat.), a muscle acting in a direction oblique to the mesial plane of the body, or to the associated muscles; -- applied especially to two muscles of the eyeball. Oblique narration. See Oblique speech. Oblique planes (Dialing), planes which decline from the zenith, or incline toward the horizon. Oblique sailing (Naut.), the movement of a ship when she sails upon some rhumb between the four cardinal points, making an oblique angle with the meridian. Oblique speech (Rhet.), speech which is quoted indirectly, or in a different person from that employed by the original speaker. Oblique sphere (Astron. & Geog.), the celestial or terrestrial sphere when its axis is oblique to the horizon of the place; or as it appears to an observer at any point on the earth except the poles and the equator. Oblique step (Mil.), a step in marching, by which the soldier, while advancing, gradually takes ground to the right or left at an angle of about 25[deg]. It is not now practiced. --Wilhelm. Oblique system of co["o]rdinates (Anal. Geom.), a system in which the co["o]rdinate axes are oblique to each other.
Polar coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Rectangular coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Rectilinear coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Spherical coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.
Trilinear coordinates
Note: Co["o]rdinates are of several kinds, consisting in some of the different cases, of the following elements, namely: (a) (Geom. of Two Dimensions) The abscissa and ordinate of any point, taken together; as the abscissa PY and ordinate PX of the point P (Fig. 2, referred to the co["o]rdinate axes AY and AX. (b) Any radius vector PA (Fig. 1), together with its angle of inclination to a fixed line, APX, by which any point A in the same plane is referred to that fixed line, and a fixed point in it, called the pole, P. (c) (Geom. of Three Dimensions) Any three lines, or distances, PB, PC, PD (Fig. 3), taken parallel to three co["o]rdinate axes, AX, AY, AZ, and measured from the corresponding co["o]rdinate fixed planes, YAZ, XAZ, XAY, to any point in space, P, whose position is thereby determined with respect to these planes and axes. (d) A radius vector, the angle which it makes with a fixed plane, and the angle which its projection on the plane makes with a fixed line line in the plane, by which means any point in space at the free extremity of the radius vector is referred to that fixed plane and fixed line, and a fixed point in that line, the pole of the radius vector. Cartesian co["o]rdinates. See under Cartesian. Geographical co["o]rdinates, the latitude and longitude of a place, by which its relative situation on the globe is known. The height of the above the sea level constitutes a third co["o]rdinate. Polar co["o]rdinates, co["o]rdinates made up of a radius vector and its angle of inclination to another line, or a line and plane; as those defined in (b) and (d) above. Rectangular co["o]rdinates, co["o]rdinates the axes of which intersect at right angles. Rectilinear co["o]rdinates, co["o]rdinates made up of right lines. Those defined in (a) and (c) above are called also Cartesian co["o]rdinates. Trigonometrical or Spherical co["o]rdinates, elements of reference, by means of which the position of a point on the surface of a sphere may be determined with respect to two great circles of the sphere. Trilinear co["o]rdinates, co["o]rdinates of a point in a plane, consisting of the three ratios which the three distances of the point from three fixed lines have one to another.

Meaning of Inates from wikipedia

- Inates is a village and rural commune in the Tillabéri Region of Niger. As of 2012, it had a po****tion of 23,503. On 10 December 2019, one of the most...
- to the Islamic State in the Greater Sahara attacked a military post in Inates, Tillabéri Region, Niger. They used guns, bombs, and mortars killing over...
- This article contains Ethiopic text. Without proper rendering support, you may see question marks, boxes, or other symbols instead of Ethiopic characters...
- Islamic State in the Greater Sahara (IS-GS) attacked a military post in Inates, killing over seventy soldiers and kidnapping others. The attack was the...
- large group of fighters belonging to the IS-GS attacked a military post in Inates, Niger, killing over seventy soldiers and kidnapping others. On 9 January...
- Islamic State in the Greater Sahara militants attacked the mining town of Inates, Tillabéri Region, Niger, killing eighteen Nigerien soldiers. Since the...
- March 2012. Retrieved 25 March 2012. Guernsey Press (7 May 2012). "'Dom'-inating Green Lions finally get just rewards". thisisguernsey. Archived from the...
- Islamic State in the Greater Sahara (IS-GS) attacked a military post in Inates, Niger, killing over seventy soldiers and kidnapping others. The attack...
- large group of fighters belonging to the IS-GS attacked a military post in Inates, Niger, killing over seventy soldiers and kidnapping others. The attack...
- through ISWAP on January 14, 2020. "Behind the Jihadist Attack in Niger's Inates | Crisis Group". www.crisisgroup.org. 2019-12-13. Retrieved 2024-08-14....