-
continuous functions from one
topological space to
another are
called homotopic (from
Ancient Gr****: ὁμός homós 'same, similar' and τόπος tópos 'place')...
- In mathematics,
homotopical algebra is a
collection of
concepts comprising the
nonabelian aspects of
homological algebra, and
possibly the
abelian aspects...
- topology,
homotopical connectivity is a
property describing a
topological space based on the
dimension of its holes. In general, low
homotopical connectivity...
- In biology,
homotopic connectivity is the
connectivity between mirror areas of the
human brain hemispheres.
Changes in the
homotopic connectivity occur...
- applies. This includes,
among other lines of work, the
construction of
homotopical and higher-categorical
models for such type theories; the use of type...
- heterotopic,
homotopic, enantiotopic, or diastereotopic.
Homotopic groups in a
chemical compound are
equivalent groups. Two
groups A and B are
homotopic if the...
- as: We also say that f and g are
chain homotopic, or that f − g {\displaystyle f-g} is null-
homotopic or
homotopic to 0. It is
clear from the definition...
-
Higher Categories and
Homotopical Algebra (PDF).
Cambridge University Press. ISBN 978-1108473200. Quillen,
Daniel G. (1967),
Homotopical algebra,
Lecture Notes...
-
space X is
contractible if the
identity map on X is null-
homotopic, i.e. if it is
homotopic to some
constant map. Intuitively, a
contractible space is...
-
Textbooks in Mathematics, (2008). Brown, Ronald; Loday, Jean-Louis (1987). "
Homotopical excision and
Hurewicz theorems for n-cubes of spaces".
Proceedings of...