- In mathematics,
homotopical algebra is a
collection of
concepts comprising the
nonabelian aspects of
homological algebra, and
possibly the
abelian aspects...
-
continuous functions from one
topological space to
another are
called homotopic (from
Ancient Gr****: ὁμός homós "same, similar" and τόπος tópos "place")...
- topology,
homotopical connectivity is a
property describing a
topological space based on the
dimension of its holes. In general, low
homotopical connectivity...
- In biology,
homotopic connectivity is the
connectivity between mirror areas of the
human brain hemispheres.
Changes in the
homotopic connectivity occur...
- as: We also say that f and g are
chain homotopic, or that f − g {\displaystyle f-g} is null-
homotopic or
homotopic to 0. It is
clear from the definition...
- heterotopic,
homotopic, enantiotopic, or diastereotopic.
Homotopic groups in a
chemical compound are
equivalent groups. Two
groups A and B are
homotopic if the...
- applies. This includes,
among other lines of work, the
construction of
homotopical and higher-categorical
models for such type theories; the use of type...
-
space X is
contractible if the
identity map on X is null-
homotopic, i.e. if it is
homotopic to some
constant map. Intuitively, a
contractible space is...
- homology, the
study of
closed model categories is
sometimes thought of as
homotopical algebra. The
definition given initially by
Quillen was that of a closed...
-
property of a graph. The
property of
being a
connected space in topology.
Homotopical connectivity, a
property related to the
dimensions of
holes in a topological...