-
vectors of the
simple Lie
group A7.
Expanded 7-simplex
Small petated hexadecaexon (acronym: suph) (Jonathan Bowers) The
vertices of the
hexicated 7-simplex...
-
construction is
based on
facets of the
stericated 8-orthoplex.
Small bicellated hexadecaexon (acronym: sabach) (Jonathan Bowers) The
vertices of the bistericated...
- \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}}
Tetradecapeton 3t{35}
Hexadecaexon 3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3...
- \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}}
Tetradecapeton 3t{35}
Hexadecaexon 3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3...
- is
called 03,3 for its
branching Coxeter-Dynkin diagram,
shown as .
Hexadecaexon (Acronym: he) (Jonathan Bowers) The
vertices of the
trirectified 7-simplex...
- \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}}
Tetradecapeton 3t{35}
Hexadecaexon 3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3...
- \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}}
Tetradecapeton 3t{35}
Hexadecaexon 3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3...
- \left\{{\begin{array}{l}3,3\\3,3\end{array}}\right\}}
Tetradecapeton 3t{35}
Hexadecaexon 3r{36} = {33,3} { 3 , 3 , 3 3 , 3 , 3 } {\displaystyle \left\{{\begin{array}{l}3...