- (4): 447–453. doi:10.1017/S0030605307414107. Wibisono, H. T.; Linkie, M.;
Guillera-Arroita, G.; Smith, J. A.; Sunarto; Pusarini, W.; Asriadi; Baroto, P.;...
-
Verrill (2009),
level 7 by S.
Cooper (2012), part of
level 8 by
Almkvist and
Guillera (2012), part of
level 10 by Y. Yang, and the rest by H. H. Chan and S....
- 1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446
Guillera &
Sondow 2008.
Guillera &
Sondow 2008, p. 248–249 Weisstein, Eric W. "Inverse Tangent...
- {4}{5}}\;{\frac {6}{5}}\;{\frac {6}{7}}\;{\frac {8}{7}}\right)^{1/8}\cdots } and
Guillera's product e = ( 2 1 ) 1 / 1 ( 2 2 1 ⋅ 3 ) 1 / 2 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 /...
-
Conservation Breeding Specialist Group. pp. 93–102. Wibisono, H. T.; Linkie, M.;
Guillera-Arroita, G.; Smith, J. A. &
Sunarto (2011). "Po****tion
Status of a Cryptic...
-
Oxford University Press. ISBN 978-0-19-921985-8. OCLC 214305907.
Jesus Guillera;
Jonathan Sondow (2008). "Double
integrals and
infinite products for some...
-
infinite series obtained by
simply extending the
outer summation to ∞ (
Guillera &
Sondow 2008,
Theorem 2.1): Li s ( z ) = ∑ k = 0 ∞ ( − z 1 − z ) k +...
- ) {\displaystyle \zeta (3)} .
Other quickly converging series, due to
Guillera and
Pilehrood and emplo**** by the y-cruncher software, include: G = 1 2...
- (5): 1527–1535. doi:10.1090/S0002-9939-1995-1283544-0. JSTOR 2161144.
Guillera, Jesus; Sondow,
Jonathan (2008). "Double
integrals and
infinite products...
-
original (PDF) on 2011-06-06.
Retrieved 2010-04-29. Gourévitch, Boris;
Guillera Goyanes, Jesús (2007). "Construction of
binomial sums for π and polylogarithmic...