Definition of Forall. Meaning of Forall. Synonyms of Forall

Here you will find one or more explanations in English for the word Forall. Also in the bottom left of the page several parts of wikipedia pages related to the word Forall and, of course, Forall synonyms and on the right images related to the word Forall.

Definition of Forall

No result for Forall. Showing similar results...

Meaning of Forall from wikipedia

- universal quantifier is encoded as U+2200 ∀ FOR ALL in Unicode, and as \forall in LaTeX and related formula editors. Suppose it is given that 2·0 = 0 +...
- {\displaystyle \forall A\forall w_{1}\forall w_{2}\ldots \forall w_{n}{\bigl [}\forall x(x\in A\Rightarrow \exists !y\,\varphi )\Rightarrow \exists B\ \forall x{\bigl...
- ( x , y ) = 0 ) ] {\displaystyle (\forall x\forall y\,[\mathop {\leq } (\mathop {+} (x,y),z)\to \forall x\,\forall y\,\mathop {+} (x,y)=0)]} is a formula...
- (quantified) type variables. E.g.: cons : forall a . a -> List a -> List a nil  : forall a . List a id  : forall a . a -> a Polymorphic types can become...
- {\displaystyle \forall x_{1}\ldots \forall x_{n}\;\exists y\;P(y)} with ∀ x 1 … ∀ x n P ( f ( x 1 , … , x n ) ) {\displaystyle \forall x_{1}\ldots \forall x_{n}\;P(f(x_{1}...
- < δ ⟹ | f ( x ) − L | < ε ) . {\displaystyle (\forall \varepsilon >0)\,(\exists \delta >0)\,(\forall x\in \mathbb {R} )\,(0<|x-p|<\delta \implies |f(x)-L|<\varepsilon...
- \vdash \!P(x)} has been derived, then ⊢ ∀ x P ( x ) {\displaystyle \vdash \!\forall x\,P(x)} can be derived. The full generalization rule allows for hypotheses...
- \forall x\ (x+0=x)} ∀ x , y   ( x + S ( y ) = S ( x + y ) ) {\displaystyle \forall x,y\ (x+S(y)=S(x+y))} ∀ x   ( x ⋅ 0 = 0 ) {\displaystyle \forall x\...
- p n ) ) ) {\displaystyle {\begin{aligned}&\forall x\,\forall y\,\forall z\,\forall p_{1}\ldots \forall p_{n}[\varphi (x,y,p_{1},\ldots ,p_{n})\wedge...
- {\begin{aligned}\forall x,p(x)\to (\forall y,q(x)\to \pm r(x,y)),&\quad \forall x,p(x)\to (\exists y,q(x)\wedge \pm r(x,y))\\\exists x,p(x)\wedge (\forall y,q(x)\to...