-
Emptyset is a Bristol-based
production project,
formed in 2005 by
James Ginzburg and Paul Purgas.
Ginzburg and
Purgas say that by
working across performance...
- 3\}\}\\&&&=&\{\{\{\{\{\{\
emptyset \},\{\
emptyset ,1\}\}\},\\&&&&\{\{\{\
emptyset \},\{\
emptyset ,1\}\},2\}\}\},\\&&&&\{\{\{\{\{\
emptyset \},\{\
emptyset ,1\}\}\},\\&&&&\{\{\{\emptyset...
- A\setminus A=\
emptyset .} ∅ ∖ A = ∅ . {\displaystyle \
emptyset \setminus A=\
emptyset .} A ∖ ∅ = A . {\displaystyle A\setminus \
emptyset =A.} A ∖ U = ∅...
- }\mathbf {Y} \,(P(x)\lor Q(y)),&{\text{provided that }}\mathbf {Y} \neq \
emptyset \\P(x)\to (\exists {y}{\in }\mathbf {Y} \,Q(y))&\equiv \ \exists {y}{\in...
- ∗ ( q 0 , w ) ∩ F ≠ ∅ {\displaystyle \delta ^{*}(q_{0},w)\cap F\not =\
emptyset } ,
where δ ∗ : Q × Σ ∗ → P ( Q ) {\displaystyle \delta ^{*}:Q\times \Sigma...
- {\displaystyle B} are
close then A ≠ ∅ {\displaystyle A\neq \
emptyset } and B ≠ ∅ {\displaystyle B\neq \
emptyset } if A {\displaystyle A} and B {\displaystyle B}...
- j\in [n]:s_{i}\cap s_{j}\neq \
emptyset } , then s 1 ∩ ⋯ ∩ s n ≠ ∅ {\displaystyle s_{1}\cap \cdots \cap s_{n}\neq \
emptyset } .
These concepts are named...
-
family P does not
contain the
empty set (that is ∅ ∉ P {\displaystyle \
emptyset \notin P} ). The
union of the sets in P is
equal to X (that is ⋃ A ∈ P...
- {\displaystyle \
emptyset ^{(n)}} , that is, if and only if B {\displaystyle B} is Σ 1 0 , ∅ ( n ) {\displaystyle \Sigma _{1}^{0,\
emptyset ^{(n)}}} . The...
- {\displaystyle \
emptyset } . Therefore,
there is a
single equivalence class of
ordered bases, namely, the
class { ∅ } {\displaystyle \{\
emptyset \}}
whose sole...