-
Emptyset is a Bristol-based
production project,
formed in 2005 by
James Ginzburg and Paul Purgas.
Ginzburg and
Purgas say that by
working across performance...
- 3\}\}\\&&&=&\{\{\{\{\{\{\
emptyset \},\{\
emptyset ,1\}\}\},\\&&&&\{\{\{\
emptyset \},\{\
emptyset ,1\}\},2\}\}\},\\&&&&\{\{\{\{\{\
emptyset \},\{\
emptyset ,1\}\}\},\\&&&&\{\{\{\emptyset...
- A\setminus A=\
emptyset .} ∅ ∖ A = ∅ . {\displaystyle \
emptyset \setminus A=\
emptyset .} A ∖ ∅ = A . {\displaystyle A\setminus \
emptyset =A.} A ∖ U = ∅...
- , … {\displaystyle \
emptyset ,\{\
emptyset \},\{\
emptyset ,\{\
emptyset \}\},\{\
emptyset ,\{\
emptyset \},\{\
emptyset ,\{\
emptyset \}\}\},\dots } . For...
- }\mathbf {Y} \,(P(x)\lor Q(y)),&{\text{provided that }}\mathbf {Y} \neq \
emptyset \\P(x)\to (\exists {y}{\in }\mathbf {Y} \,Q(y))&\equiv \ \exists {y}{\in...
- of four sets: A = [ ∅ , ∅ , ∅ , ∅ ] {\displaystyle A=[\
emptyset ,\
emptyset ,\
emptyset ,\
emptyset ]} .
Consider a
sequence of
operations in
which we insert...
- S\subseteq W\times X,} S ≠ ∅ {\displaystyle S\neq \
emptyset }
implies S R ≠ ∅ . {\displaystyle SR\neq \
emptyset .} : 54 R {\displaystyle R} is
total iff I X...
- {\displaystyle \
emptyset } is a set with no elements,
while { ∅ } {\displaystyle \{\
emptyset \}} is a
singleton with ∅ {\displaystyle \
emptyset } as...
-
mathematically as If A ∩ B = ∅ {\displaystyle A\cap B=\
emptyset } and B ∩ C = ∅ {\displaystyle B\cap C=\
emptyset } then A ⊂ C {\displaystyle A\subset C} . It is...
- j\in [n]:s_{i}\cap s_{j}\neq \
emptyset } , then s 1 ∩ ⋯ ∩ s n ≠ ∅ {\displaystyle s_{1}\cap \cdots \cap s_{n}\neq \
emptyset } .
These concepts are named...