- &
Crstici (2006) pp.24–25
Hardy &
Wright 1979, thm. 332 Ribenboim, p.38 Sándor, Mitrinović &
Crstici (2006) p.16 Guy (2004) p.144 Sándor &
Crstici (2004)...
- (101031 − 1)/9.[citation needed][needs update]
Equidigital number Sándor &
Crstici (2004) p.383 McDaniel,
Wayne (1987). "The
existence of
infinitely many...
- 2015). "Self Numbers".
Retrieved 2024-02-29. Sándor &
Crstici (2004) p.384 Sándor &
Crstici (2004) p.385 Kaprekar, D. R. The
Mathematics of New Self-Numbers...
- arXiv:1309.3527 [math.NT]. Sándor, Mitrinović &
Crstici 2006, p. 106 Sándor, Mitrinović &
Crstici 2006, pp. 108–109
Haukkanen &
Sitaramaiah 2020a Haukkanen...
- 1976, §3.9.
Edwards 1974, Ch. 12.2.
Popovici 1963, pp. 493–499. Sándor &
Crstici 2004, p. 107. Abramowitz, Milton; Stegun,
Irene A. (1972) [1964]. Handbook...
- Springer-Verlag. pp. 16, 45–53. Sándor, József; Mitrinović,
Dragoslav S.;
Crstici, Borislav, eds. (2006).
Handbook of
number theory I. Dordrecht: Springer-Verlag...
-
Theorem 7, p. 695.
Prielipp (1970),
Theorem 3, p. 694. Sándor, Mitrinović &
Crstici (2006), p. 108. ****son (1919), p. 3. ****son,
Leonard Eugene (1919). History...
- York: Chelsea, pp. 78–129, 1962 Sándor, József; Mitrinović,
Dragoslav S.;
Crstici, Borislav, eds. (2006).
Handbook of
number theory I. Dordrecht: Springer-Verlag...
- to 30 = 2·3·5 are
known [García,
Pedersen & te
Riele (2003), Sándor &
Crstici (2004)]. The Thābit ibn
Qurrah theorem is a
method for
discovering amicable...
- &
Crstici (2004) p.194
Theorem 2 in Erdős (1991) 3.
Normal order. (p.365)
Theorem 5 in
Friedlander (2001)
Theorem 1 in Erdős (1991) Sándor &
Crstici (2004)...