-
infinity symbol with its
mathematical meaning in 1655, in his De
sectionibus conicis.
Wallis did not
explain his
choice of this symbol. It has been conjectured...
-
Carolo Friderico (1809).
Theoria motvs corporvm coelestivm in
sectionibvs conicis Solem ambientivm [Theory of the
Motion of the
Heavenly Bodies Moving about...
-
Monastery early monastic site,
erenaghs until 16th
century St
Canice (St
Conici)
____________________ Nuachongbail; Fochwayll; Killeitra;
Tircaerthian Kilcronaghan...
-
works of
Gauss (1809) "Theoria
motus corporum coelestium in
sectionibus conicis solem ambientium" (page 212). Gauss's
definition differs from the modern...
- in Gauss's 1809 work
Theoria motus corporum coelestium in
sectionibus conicis solem ambientum.
Given m {\displaystyle m}
functions r = ( r 1 , … , r...
-
published in 1809 as
Theoria motus corporum coelestium in
sectionibus conicis solem ambientum. It
introduced the
Gaussian gravitational constant. Since...
- Apollonius, and
Johannes Werner's
Libellus super viginti duobus elementis conicis of 1522. The
second book
moves onto two-dimensional geometry, i.e. the...
- Carl
Friedrich (1809).
Theoria motus corporum coelestium in
sectionibus conicis solem ambientium. Hamburg, Germany:
Friedrich Perthes and I.H. Besser....
-
notation ∞ {\displaystyle \infty } for such a
number in his De
sectionibus conicis, and
exploited it in area
calculations by
dividing the
region into infinitesimal...
-
Philosophical Society. 3: 185–190. Hamilton, Hugh (1758). De
Sectionibus Conicis.
Tractatus Geometricus. In quo, ex
Natura ipsius Coni,
Sectionum Affectiones...