-
Daniel Bennequin (3
January 1952) is a
French mathematician,
known for the Thurston–
Bennequin number (sometimes
called the
Bennequin number) introduced...
- In the
mathematical theory of knots, the Thurston–
Bennequin number, or
Bennequin number, of a
front diagram of a
Legendrian knot is
defined as the writhe...
-
Beauville 1947 1966 — 1997 — Gérard Ben
Arous 1957 1977 — — —
Daniel Bennequin 1952 1972 — — —
Claude Chabauty 1910 1929 — — 1990
Alain Connes 1947 1966...
- Probab. Appl. 7 (4): 439–447. doi:10.1137/1107041. Baudot, P.; Tapia, M.;
Bennequin, D.; Goaillard, J.M. (2019). "Topological
Information Data Analysis"....
- 3389/fnhum.2016.00423. PMC 5004455. PMID 27624312.
David Rudrauf,
Daniel Bennequin,
Isabela Granic,
Gregory Landini, Karl Friston,
Kenneth Williford (2017)...
-
genus of a knot K is
bounded below by a
quantity involving the Thurston–
Bennequin invariant of K: g s ( K ) ≥ ( T B ( K ) + 1 ) / 2. {\displaystyle g_{s}(K)\geq...
- doi:10.3389/fpsyg.2012.00043. PMC 3289982. PMID 22393327. Rudrauf, David;
Bennequin, Daniel; Granic, Isabela; Landini, Gregory; Friston, Karl; Williford,...
-
inequivalent Legendrian knots can be
distinguished by
considering their Thurston-
Bennequin invariants and
rotation number,
which are
together known as the "classical...
- 1007/s10208-014-9201-4. ISSN 1615-3375. S2CID 17150103. Baudot, Pierre;
Bennequin,
Daniel (2015). "The
Homological Nature of Entropy". Entropy. 17 (5):...
- more
powerful invariant than the "classical invariants",
namely Thurston-
Bennequin number and
rotation number (within a
class of
smooth knots). Yuri Chekanov...