-
pyramid formed by
stacking centered squares; for this reason, in his book
Arithmeticorum libri duo (1575),
Francesco Maurolico called these numbers "pyramides...
- de Fermat,
Claude Gaspard Bachet de Meziriac,
Diophanti Alexandrini Arithmeticorum libri 6, et De
numeris multangulis liber unus. **** comm. C(laude) G(aspar)...
- Brussels, 1983: 682–710.
Bachet de Méziriac, C.G.
Diophanti Alexandrini Arithmeticorum libri **** et De
numeris multangulis liber unus. Paris: Lutetiae, 1621...
-
Freudenthal carefully showed) was that of
Francesco Maurolico in his
Arithmeticorum libri duo (1575), who used the
technique to
prove that the sum of the...
- de Fermat,
Claude Gaspard Bachet de Meziriac,
Diophanti Alexandrini Arithmeticorum libri 6, et De
numeris multangulis liber unus. **** comm. C(laude) G(aspar)...
- Roy. Sci., 5, 1666–1699 (1729)
Euler L (1738). "Theorematum
quorundam arithmeticorum demonstrationes". Novi
Commentarii Academiae Scientiarum Petropolitanae...
- Sci., 5, 1666–1699 (1729).
Euler L (1738). "Theorematum
quorundam arithmeticorum demonstrationes". Comm. Acad. Sci. Petrop. 10: 125–146..
Reprinted Opera...
-
Botolph without Aldersgate.
Besides the
works noted above, Gill
printed ‘
Arithmeticorum Hanamnēsis’ at the end of N. Simpson's ‘Arithmeticæ Compendium,’ 1623;...
-
Euler formulated it more
generally for
convex polyhedra in 1752. His
Arithmeticorum libri duo (1575)
includes the
first known proof by
mathematical induction...