- 5em]\operatorname {
arccsc}(x)&={\frac {\pi }{2}}-\operatorname {arcsec}(x)\end{aligned}}}
Negative arguments:
arcsin ( − x ) = −
arcsin ( x )
arccsc ( − x...
- ∫
arccsc ( a x ) d x = x
arccsc ( a x ) + 1 a
artanh 1 − 1 a 2 x 2 + C {\displaystyle \int \operatorname {
arccsc}(ax)\,dx=x\operatorname {
arccsc}(ax)+{\frac...
- 1 + x 2 tan (
arctan x ) = x sin (
arccsc x ) = 1 x cos (
arccsc x ) = x 2 − 1 x tan (
arccsc x ) = 1 x 2 − 1 sin (
arcsec x ) = x...
- {x^{2}-1}}}}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}} Let y =
arccsc x ∣ | x | ≥ 1 {\displaystyle y=\operatorname {
arccsc} x\ \mid |x|\geq 1} Then x = csc y ∣ ...
-
arccosec –
inverse cosecant function. (Also
written as
arccsc.)
arccot –
inverse cotangent function.
arccsc –
inverse cosecant function. (Also
written as arccosec...
- x\vert \geq 1} ∫
arccsc x d x = x
arccsc x + ln | x ( 1 + 1 − x − 2 ) | + C , for | x | ≥ 1 {\displaystyle \int \operatorname {
arccsc} {x}\,dx=x\operatorname...
- {\textstyle 0\leq y\leq \pi ,\;y\neq {\frac {\pi }{2}}} y =
arccsc x {\displaystyle y=\operatorname {
arccsc} x} csc y = x {\displaystyle \csc y=x} x < − 1 or ...
- 1 to
infinity the
orbit is a
hyperbola branch making a
total turn of 2
arccsc(e),
decreasing from 180 to 0 degrees. Here, the
total turn is analogous...
- < π/2 or π/2 < y ≤ π 0° ≤ y < 90° or 90° < y ≤ 180°
arccosecant y =
arccsc(x) x = csc(y) x ≤ −1 or 1 ≤ x −π/2 ≤ y < 0 or 0 < y ≤ π/2 −90° ≤ y <...
- sin−1(x) ≤ π/2
arccos 0 ≤ cos−1(x) ≤ π
arctan −π/2 < tan−1(x) < π/2
arccot 0 < cot−1(x) < π
arcsec 0 ≤ sec−1(x) ≤ π
arccsc −π/2 ≤ csc−1(x) ≤ π/2...