- 1 x ) =
arccot ( x ) = π 2 −
arctan ( x ) , if x > 0
arctan ( 1 x ) =
arccot ( x ) − π = − π 2 −
arctan ( x ) , if x < 0
arccot ( 1 x...
- -1)} ∫
arccot ( x ) d x = x
arccot ( x ) + ln ( x 2 + 1 ) 2 + C {\displaystyle \int \operatorname {
arccot}(x)\,dx=x\operatorname {
arccot}(x)+{\frac...
- (
arccot ( 0 ) −
arccot ( 1 ) +
arccot ( 5 ) −
arccot ( 55 ) +
arccot ( 14187 ) − ⋯ ) . {\displaystyle \ln 2=\cot({\operatorname {
arccot}(0)-\operatorname...
- tan (
arcsec x ) = x 2 − 1 sin (
arccot x ) = 1 1 + x 2 cos (
arccot x ) = x 1 + x 2 tan (
arccot x ) = 1 x {\displaystyle {\begin{aligned}\sin(\arcsin...
-
arctan x +
arccot x = π 2 {\displaystyle \arctan x+\operatorname {
arccot} x={\dfrac {\pi }{2}}}
follows immediately that d d x
arccot x = d d x (...
- latitude,
where ϵ =
arccot ( ± A R ) {\displaystyle \epsilon =\operatorname {
arccot}(\pm AR)} . The sign used in the
argument of the
arccot {\displaystyle...
- tan [
arctan ( 1 3 5 − 1 3 6 30 + 4 5 3 + 1 3 6 30 − 4 5 3 ) − 1 4
arccot ( 2 ) ] {\displaystyle R{\bigl [}\exp(-{\sqrt {2}}\,\pi ){\bigr ]}=\tan...
- find the Sun's
altitude as A ( n ) =
arccot ( n + | tan ( ϕ − δ ) | ) . {\displaystyle A(n)=\operatorname {
arccot}(n+\left|\tan(\phi -\delta )\right|)...
-
arccot x d x = x
arccot x + 1 2 ln | 1 + x 2 | + C , for all real x {\displaystyle \int \operatorname {
arccot} {x}\,dx=x\operatorname {
arccot}...
-
coordinates using the
formulas r = x 2 + y 2 + z 2 φ =
arctan y x θ =
arccot z x 2 + y 2 w = w {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}+z^{2}}}\\\varphi...